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Physics H7C Fall 2002 (Strovink)

PROBLEM SET 4

1. Shiny metals.
For a metal, the right-hand side of the wave
equation (proportional to the conductivity σ)
does not vanish. The equation can still be
solved by a sinusoid with angular frequency ω
and phase velocity vphase = c/n as usual. Here,
however, the refractive index n is complex. In
particular, in good conductors with µ = µ0 and

σ

ε0ω
� 1 ,

the complex index becomes

n ≈
√

σ

ε0ω
eiπ/4 .

Nothing that we did while deriving Fresnel’s
equations assumed that n was real, so the deriva-
tion still is valid.
(a.)
Show that good-conducting metals are shiny,
i.e. demonstrate that at normal incidence essen-
tially all of the the incident beam intensity is
reflected.
(b.)
Provide a rough estimate of how far the trans-
mitted wave penetrates into the metal. (This is
called the skin depth.)

2. Flat cable.
A TEM waveguide has two conductors, and fields
that are transverse to its long axis (a coaxial ca-
ble is a good example). Consider a pulse trav-
elling down a TEM waveguide. At any point in
the pulse, the cable’s characteristic impedance
Z is defined to be the ratio of the |potential
difference| between the two conductors, divided
by the |current| flowing in either conductor (the
current flows out on one conductor and back on
the other). Z is equal to

√
L/C, where L is the

cable’s inductance per unit length and C is the
capacitance per unit length.

Sometimes it’s desirable for a TEM waveguide
to have a very low characteristic impedance

(for example, if a low-impedance load like a
spark chamber must be driven). This can be
accomplished by putting many coaxial cables
in parallel. More elegantly, one could build a
flat cable consisting of a thin sheet of dielectric
sandwiched between two sheets of conductor. If
the dielectric thickness is small compared to the
cable’s width, fringe fields can be neglected, and
it is straightforward to calculate the flat cable’s
characteristic impedance.
(a.)
Given a ribbon of polyethylene with µ = µ0,
n = 1.5, and a thickness of 0.2 mm, design a flat
cable with a characteristic impedance of 3.77
Ω (1% of the characteristic impedance of free
space). What should the width of this cable be?
(b.)
You assign a subordinate to fabricate this flat
cable. He builds part of it with the specified
width, but, to avoid running out of material, he
builds the remainder with only half the width
that you specified. If you send a voltage pulse
down the fat end of this mongrel cable, what
fraction of it will reflect back from the junction
between its mutually dissimilar parts?

3.
Right-hand circularly polarized light is inci-
dent from vacuum upon a semi-infinite slab of
clear insulator with µ = µ0 (so that Fowles’
Eqs. (2.54-2.59) do apply) and with refractive
index n =

√
3. The incident beam makes a 60◦

angle with the normal to the slab’s surface.
(a.)
Describe the polarization of the reflected light.
(b.)
What fraction of the incident beam intensity is
reflected?

4. Mirage.
On page 45, Fowles states “For grazing incidence
(θ ∼ 90 degrees), the reflectance is... the same
for both types of polarization, namely, unity,
and it is independent of n.” Let’s analyze this
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claim in a bit more detail. For the two me-
dia, we’ll assume that µ1 = µ2, so that Fowles’
Eqs. (2.58-2.59) do apply. In those equations,
take θ = π

2 −ψ and consider the limit as ψ → 0.
(a.)
In that limit, show that the reflectance (= frac-
tion of light energy that is reflected) indeed is
unity and independent of n = n2/n1 for both
types of polarization, as Fowles claims.
(b.)
In that same limit, show that the ratio of the re-
flected to the incident amplitude of �E is not the
same for both types of polarization, using the
sign conventions implicit in Fowles’ Fig. 2.11.
Looking at that figure, is it reasonable for �E ′ to
“flip” relative to �E for one type of polarization,
but not for the other?
(c.)
Now consider the mirage to lowest nonvanishing
order in ψ � 1. If you want to minimize your
confusion from mirages, and you are wearing Po-
laroid sunglasses, how should their absorption
axis be oriented relative to the horizon?

5.
Among the many celebrated inventions of Luis
Alvarez, a member of the Berkeley Physics De-
partment from the 1940’s up to his death in the
late 1980’s, was the radar glide-path system for
guiding an airplane’s landing approach during
bad weather. (This system was used first in the
Battle of Britain, where it saved the lives of many
Allied aviators.) The basic principle was similar
to that of Lloyd’s mirror (Fowles Fig. 3.3(a)):
a radar transmitter was located at point S and
the ground itself served as the mirror (radar fre-
quencies are so low that the ground is “shiny”;
see Problem 1). The airplane at point P car-
ried a crude radar detector; the pilot adjusted
his trajectory to maximize the radar signal.
(a.)
Argue that the lowest-elevation maximum in the
interference pattern was not produced at ground
level (which would have been a disaster).
(b.)
If the WWII radar wavelength was 1 m and the
B-17 was to approach the ground at an angle of
0.1 rad (these numbers are speculative), at what
height should the radar transmitter have been

set?

6.
Calculate the interference pattern that would
be obtained if three thin slits instead of two
were used in Young’s experiment (assume equal
spacing of the slits). Assume further that the
two outer slits are identical, but that the center
slit (though still thin) passes twice as large an
electric field amplitude as either of the outer slits.

7.
We wish to use the light of the sun (angular
width 0.5◦), passed through a 600 nm filter, as
the source for a double-thin-slit Young’s inter-
ference experiment.
(a.)
Assuming a very narrow filter bandpass, esti-
mate the maximum slit separation (in mm) that
would yield an interference pattern which isn’t
too badly washed out, i.e. with a fringe visibil-
ity V ≈ 1

2 .
(b.)
Assuming an adequately small slit separation,
roughly estimate the maximum filter bandpass
(in nm) that would allow us to observe at least
20 fringes. With this choice of bandpass, what
is the coherence length of the transmitted light?

8.
Fowles 3.12. Note that the “power spectrum” is
|g(ω)|2, where g(ω) is the Fourier transform of
f(t).


